Effect of confinement: polygons in strips, slabs and rectangles
نویسندگان
چکیده
In this chapter we will be considering the effect of confining polygons to lie in a bounded geometry. This has already been briefly discussed in Chapters 2 and 3, but here we give many more results. The simplest, non-trivial case is that of SAP on the two-dimensional square lattice Z2, confined between two parallel lines, say x = 0 and x = w. This problem is essentially 1-dimensional, and as such is in principle solvable. As we shall show, the solution becomes increasingly unwieldy as the distance w between the parallel lines increases. Stepping up a dimension to the situation in which polygons in the simple-cubic lattice Z3 are confined between two parallel planes, that is essentially a two-dimensional problem, and as such is not amenable to exact solution. Self-avoiding walks in slits were first treated theoretically by Daoud and de Gennes [4] in 1977, and numerically by Wall et al. [14] the same year. Wall et al. studied SAW on Z2, in particular the mean-square end-to-end distance. For a slit of width one they obtained exact results, and also obtained asymptotic results for a slit of width two. Around the same time, Wall and co-workers [13, 15] used Monte Carlo methods to study the width dependence of the growth constant for walks confined to strips of width w. In 1980 Klein [9] calculated the behaviour of
منابع مشابه
A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars
Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...
متن کاملA THEORETICALLY CORRECT RESOURCE USAGE VISUALIZATION FOR THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM
The cumulative resource constraints of the resource-constrained project scheduling problem (RCPSP) do not treat the resource demands as geometric rectangles, that is, activities are not necessarily assigned to the same resource units over their processing times. In spite of this fact, most papers on resource-constrained project scheduling mainly in the motivation phase use a strip packing of re...
متن کاملCurvature of random walks and random polygons in confinement
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected cur...
متن کاملAlgorithm for finding the largest inscribed rectangle in polygon
In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...
متن کاملEffect of Steel Confinement on Behavior of Reinforced Concrete Frame
The strength and ductility of concrete improve under multi-axial compressive stress due to confinement effect. Some parameters are effective for considering the confinement in concrete and various stress-strain models were developed by different researchers. Longitudinal and transverse reinforcement steels can influence on confinement in reinforced concrete members. In this paper, various stres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011